Making Tensor Factorizations Robust to non-Gaussian Noise

Eric C. Chi¹ and Tamara G. Kolda²

¹Department of Statistics, Rice University

²Sandia National Laboratories, Livermore

December 10, 2010

CANDECOMP/PARAFAC (CP) Tensor Factorization

World View

 $\mathsf{Data} \quad = \quad \mathsf{Systematic} \; \; \mathsf{Variation} \quad + \quad \mathsf{non-Systematic} \; \; \mathsf{Variation}$

This talk

Systematic Variation: multilinear

Rank R approximation of $\mathfrak{X} \in \mathbb{R}^{I \times J \times K}$.

$$\mathcal{X} = \mathcal{M} + \mathcal{E}$$

$$\mathcal{M} = \sum_{r=1}^{R} \mathbf{u}_r \circ \mathbf{v}_r \circ \mathbf{w}_r$$

$$m_{ijk} = \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr}$$

Fitting the CP model

Minimize sum of transformed elementwise residuals

$$\min_{\mathbf{U},\mathbf{V},\mathbf{W}} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \rho(x_{ijk} - m_{ijk})$$

Minimize by block coordinate descent

Fix V and W.

$$\min_{\mathbf{U}} \sum_{i=1}^{I} \sum_{i=1}^{J} \sum_{k=1}^{K} \rho(x_{ijk} - m_{ijk})$$

Repeat fixing two factors and minimizing the other.

$$\begin{array}{c|cccc} & \rho(y) = y^2 & \rho(y) = |y| \\ \hline \text{MLE if } e_{ijk} & \text{i.i.d. Gaussian} & \text{i.i.d. Laplacian} \\ \hline \text{Algorithm} & \text{CPALS} & \text{CPAL1} \\ \end{array}$$

Violating Gaussian assumptions: Who cares?

- What kind of non-Gaussianity is problematic?
 - Sparse large perturbations.
- Prior work: matrices
 - Hawkins, Liu, and Young (2001)
 - Ke and Kanade (2005)
 - Zhou, Li, Wright, Candès, and Ma (2010)
- Prior work: tensor
 - Vorobyov, Rong, Sidiropoulos, and Gershman (2005)
 - Minimize 1-norm loss with block coordinate descent + linear programming

Majorization-Minimization

Strategy

Minimize a surrogate function that **majorizes** the objective.

Choose surrogate such that

- ↓ surrogate ⇒ ↓ objective.
- surrogate is easier to minimize than objective.

Definition

Given f and g, real-valued functions on \mathbb{R}^p , g majorizes f at x if

- 1. g(x) = f(x)
- 2. $g(u) \ge f(u)$ for all u.

Majorizing an approximation

Smooth Approximation

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} |x_{ijk} - m_{ijk}| \approx \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sqrt{(x_{ijk} - m_{ijk})^2 + \epsilon},$$

for some small $\epsilon > 0$ ($\sim 1e$ -10) and $m_{ijk} = \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr}$.

Block Coordinate Descent on approximate loss

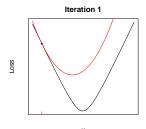
$$\min_{\mathbf{U}} \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \sqrt{(x_{ijk} - m_{ijk})^2 + \epsilon}$$

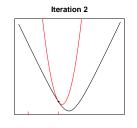
- Problem separates in rows of U.
- Each row, $\mathbf{u}_{(i)} \in \mathbb{R}^R$, can be fit with Iterative Reweighted Least Squares independently of all other rows.

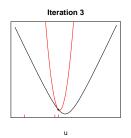
MM Algorithm

$$\begin{split} g(\cdot|\mathbf{x}^{(0)}) &\leftarrow \text{majorization of } f \text{ at } \mathbf{x}^{(0)} \\ \textbf{repeat} \\ \mathbf{x}^{(k+1)} &\leftarrow \text{argmin}_{\mathbf{x}} \ g(\mathbf{x}|\mathbf{x}^{(k)}) \\ g(\cdot|\mathbf{x}_{k+1}) &\leftarrow \text{majorization of } f \text{ at } \mathbf{x}^{(k+1)} \\ \textbf{until convergence} \end{split}$$

$$Loss = \sum_{i} \sqrt{(x_i - u)^2 + \epsilon}$$

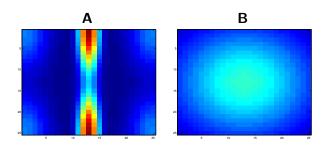






Toy example

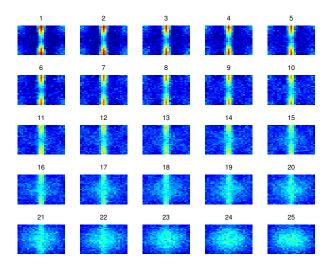
- $\mathfrak{X} \in \mathbb{R}^{25 \times 25 \times 25}$.
- Slice = mix of **A** and **B**.
- $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{25 \times 25}$.
- True rank R=2.



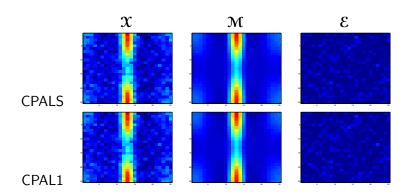
Toy example



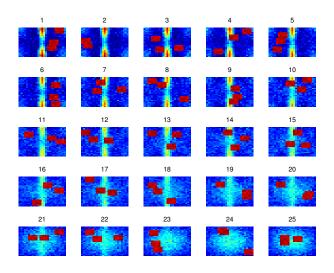
Toy example: Gaussian noise



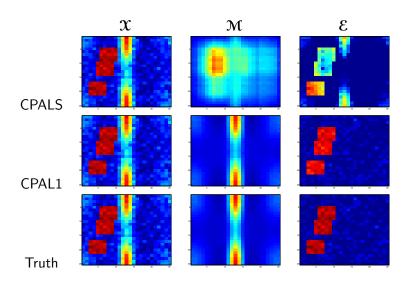
Gaussian Noise



Gaussian + non-Gaussian noise



Gaussian + non-Gaussian Noise



Discussion

Costs

- Computational: 1-norm minimization is more work than least squares.
- Statistical: Robustness versus efficiency tradeoff

Take home lesson

- Least squares can be sensitive to non-Gaussian perturbations.
- MM algorithms
 - Practical
 - Existing results on convergence
 - Existing methods for speeding up convergence
 - Majorizing losses other than 1-norm

Discussion

Future work

- Better robust loss functions?
- Data on different scales:
 - Binary
 - Non-negative data.

References for this work

- Extended abstract on arXiv
- Technical Report, in preparation
- Matlab code to be available online.

Eric C. Chi echi@rice.edu